Lund University

Construction of microscopic optical potentials Andrea Idini

Reaction seminars series
Worldwide, 18 June 2020

Optical potentials

This talk

Koning, Delaroche, NPA713, 231 (2002)

Fig. 1.1 Propagation of Drunken Man
(Auprodected with the kisd
perminion of The Encgolapinalle of Moviler)

$$
\begin{align*}
P(2,1)= & P_{0}(2,1)+P_{0}(A, 1) P(A) P_{0}(2, A)+P_{0}(B, 1) P(B) P_{d}(2, B)+\cdots \\
& +P_{0}(A, 1) P(A) P_{0}(B, A) P(B) P_{d}(2, B)+\cdots \tag{1.1}
\end{align*}
$$

A Guide to Feynman Diagrams in the ManyBody Problem - R.D. Mattuck

Green's functions

$$
\begin{aligned}
& g_{\alpha \beta}(\omega+i \eta)=\sum_{n} \frac{\left\langle\psi_{0}^{A}\right| c_{\alpha}\left|\psi_{n}^{A+1}\right\rangle\left\langle\psi_{n}^{A+1}\right| c_{\beta}^{+}\left|\psi_{0}^{A}\right\rangle}{\omega-E_{n}^{A+1}+E_{0}^{A}+i \eta} \\
& \quad+\sum_{i} \frac{\left\langle\psi_{0}^{A}\right| c_{\alpha}^{+}\left|\psi_{i}^{A-1}\right\rangle\left\langle\left\langle\psi_{i}^{A-1}\right| c_{\beta} \mid \psi_{0}^{A}\right\rangle}{\omega-E_{0}^{A}+E_{i}^{A-1}-i \eta}
\end{aligned}
$$

Källén-Lehmann spectral representation

Unperturbed case

$$
g^{0}(\omega+i \eta)=\sum_{i} \frac{1}{E-\epsilon_{i}^{b a s e} \pm i \eta}
$$

Green's functions

$$
\begin{aligned}
& g_{\alpha \beta}(\omega+i \eta)=\sum_{n} \frac{\left\langle\psi_{0}^{A}\right| c_{\alpha}\left|\psi_{n}^{A+1}\right\rangle\left\langle\psi_{n}^{A+1}\right| c_{\beta}^{c}\left|\psi_{0}^{A}\right\rangle}{\omega-E_{n}^{A+1}+E_{0}^{A}+i \eta} \\
& \quad+\sum_{i} \frac{\left\langle\psi_{0}^{A}\right| c_{\alpha}^{+}\left|\psi_{i}^{A-1}\right\rangle\left\langle\psi_{i}^{A-1}\right| c_{\beta}\left|\psi_{0}^{A}\right\rangle}{\omega-E_{0}^{A}+E_{i}^{A-1}-i \eta}
\end{aligned}
$$

Källén-Lehmann spectral representation

Unperturbed case

$$
g^{0}(\omega+i \eta)=\sum_{i} \frac{1}{E-\epsilon_{i}^{\text {base }} \pm i \eta}
$$

self-consistent Green's functions method finds spectra of the Hamiltonian operator

$$
H(A)=T-T_{c . m .}(A+1)+V+W
$$

Green's functions as many-body method

Dyson Equation

$g(\omega+i \eta)=g^{0}(\omega+i \eta)+g^{0}(\omega+i \eta) \Sigma^{*}(\omega+i \eta) g(\omega+i \eta)$
"Dressed" (with correlation)
Particle Propagator

$$
H(A)=T-T_{\text {c.m. }}(A+1)+V+W
$$

Green's functions as many-body method

Dyson Equation

$g(\omega+i \eta)=g^{0}(\omega+i \eta)+g^{0}(\omega+i \eta) \Sigma^{*}(\omega+i \eta) g(\omega+i \eta)$
"Dressed" (with correlation)
Particle Propagator

Interaction between the particle and the system (physical choice)

Fragments and changes energy of the "bare" state
$\Sigma_{\alpha \beta}(\omega+i \eta)=\sum_{r} \frac{m_{\alpha}^{r} m_{\beta}^{r}}{\omega-E_{r}+i \eta}$

Nucleon elastic scattering

Green's functions as optical potentials

Dyson Equation
$g(\omega+i \eta)=g^{0}(\omega+i \eta)+g^{0}(\omega+i \eta) \Sigma^{*}(\omega+i \eta) g(\omega+i \eta)$

Equation of motion
$\left(E+\frac{\hbar^{2}}{2 m} \nabla_{r}^{2}\right) g\left(r, r^{\prime} ; E, \Gamma\right)=\delta\left(r-r^{\prime}\right)+\int d r^{\prime \prime} \Sigma^{*}\left(r, r^{\prime \prime} ; E, \Gamma\right) g\left(r^{\prime \prime}, r ; E, \Gamma\right)$
Corresponding Hamiltonian
$H\left(r, r^{\prime}\right)=-\frac{\hbar^{2}}{2 m} \nabla_{r}^{2}+\Sigma^{*}\left(r, r^{\prime} ; E, \Gamma\right)$
Σ corresponds to the Feshbach's generalized optical potential
Escher \& Jennings PRC66 034313 (2002)

Why optical potentials?

- Optical potentials reduce manybody complexity decoupling structure contribution and reactions dynamics.
- Often fitted on elastic scattering data (locally or globally)

1 particle transfer

A.I. et al. PRC 92, 031304 (2015)

Koning, Delaroche, NPA713, 231 (2002)

Green functions and Dyson equation

$$
g_{\alpha \beta}(\omega)=g_{\alpha \beta}^{0}(\omega)+\sum_{\gamma \delta} g_{\alpha \gamma}^{0}(\omega) \Sigma_{\gamma \delta}^{\star}(\omega) g_{\delta \beta}(\omega)
$$

Faddeev RPA

Particle hole 'polarization' propagator (ph-RPA)

Particle-particle (pp-RPA) two-body correlation 'ladder' propagator

Källén-Lehmann spectral representation

Excited states calculated from Dyson equation

Volume integrals

$$
J_{W}^{\ell}(E)=4 \pi \int d r r^{2} \int d r^{\prime} r^{\prime 2} \operatorname{Im} \Sigma_{0}^{\ell} r, r ; \begin{aligned}
& E) \quad \tilde{\Sigma}_{n_{a}, n_{b}}^{\ell j}(E)=\sum_{r} \frac{m_{n_{a}}^{r} m_{n_{b}}^{r}}{E-\varepsilon_{r} \pm i \eta}
\end{aligned}
$$

Overlap function

$\Psi_{i}(r)=\sqrt{A} \int d r_{1} \not r_{i} d r_{A} \Phi_{(A-1)}^{+}\left(r_{1}, \nLeftarrow r_{i}, r_{A-1}\right) \Phi_{(A)}^{+}\left(r_{1}, \ldots, r_{A}\right)$
Proton particle-hole gap

$$
{ }^{13} \mathrm{~N},{ }^{15} \mathrm{~F} \quad{ }^{15} \mathrm{~N},{ }^{17} \mathrm{~F} \quad{ }^{21} \mathrm{~N},{ }^{23} \mathrm{~F} \quad{ }^{23} \mathrm{~N},{ }^{25} \mathrm{~F}
$$

EM results from A. Cipollone PRC92, 014306 (2015)

- Solve Dyson equation in HO Space, find $\Sigma_{n, n^{\prime}}^{l, j *}(E)$
- diagonalize in full continuum momentum space $\Sigma^{l, j *}\left(k, k^{\prime}, E\right)$

$$
\frac{k^{2}}{2 \gamma m} \psi_{l, j}(k)+\gamma^{3} \int d k^{\prime} k^{\prime 2}\left(\Sigma^{l, j *}\left(\gamma k, \gamma k^{\prime}, \gamma E\right)\right) \psi_{l, j}\left(k^{\prime}\right)=\mathrm{E} \psi_{l, j}(k)
$$

$\mathrm{NNLO}_{\text {sat }}$ $n+{ }^{16} 0($ g.s. $+e x c)$

$\varepsilon(\mathrm{MeV})$	$5 / 2^{+}$	$1 / 2^{+}$	$1 / 2^{-}$	$5 / 2^{-}$	$3 / 2^{-}$	$3 / 2^{+}$	$5 / 2_{*}^{+}$	$5 / 2_{*}^{-}$	$7 / 2_{*}^{-}$
exp.	-4.14	-3.27	-1.09	-0.30	0.41	0.94	3.23	3.02	3.54
NNLO $_{\text {sat }}-5.06$	-3.58	-0.15	-1.23	-2.24	0.91	4.57	3.36	3.37	

neutron elastic scattering from ab initio optical potential

${ }^{16} \mathrm{O}+\mathrm{n}$

Conclusions

- We are developing an interesting tool to study nuclear reactions effectively: a non-local generalized optical potential corresponding to nuclear self energy.
- SCGF provide a rich description of low energy properties.
- (p-h) correlations are related to absorption, that is missing

Perspectives

- Use the information of SCGF in the continuum in other contexts: e.g. overlap functions for Knockout
- Explore the effect of different bases and bridge the Energy gap between spectator and GF expansions
- Enrich the description of correlations in ground and excited states: multiconfiguration with projection

Thanks to

LUND UNIVERSITY

The Crafoord Foundation

Surrey

- C. Barbieri

TRIUMF

- P. Navrátil

Lund

- J. Ljungberg
- J. Rotureau
- G. Carlsson

Knockout Spectroscopic Factors

$$
\frac{k^{2}}{2 m} \psi_{l, j}(k)+\int d k^{\prime} k^{\prime 2}\left(\Sigma^{l, j *}\left(k, k^{\prime}, E\right)\right) \psi_{l, j}\left(k^{\prime}\right)=\mathrm{E} \psi_{l, j}(k)
$$

$$
S F=\left.\left|\left\langle\Phi_{n}^{(A-1)}\right| \Phi_{\text {g.s. }}^{A}\right)\right|^{2} \quad \text { Calculated from overlap wavefunctions }
$$

open circles neutrons, closed protons

Overlap wavefunctions

Collaboration with C. Bertulani

Nucleus (state)	E_{B} $[\mathrm{MeV}]$	$\left\langle r^{2}\right\rangle_{W S}^{1 / 2}$ $[\mathrm{fm}]$	$\left\langle r^{2}\right\rangle_{G F}^{1 / 2}$ $[\mathrm{fm}]$	$\mathrm{C}_{W S}$ $\left[\mathrm{fm}^{-1 / 2}\right]$	$\mathrm{C}_{G F}$ $\left[\mathrm{fm}^{-1 / 2}\right]$	$\sigma_{q f}^{W S}$ $[\mathrm{mb}]$	$\sigma_{q f}^{G F}$ $[\mathrm{mb}]$	$\sigma_{k n}^{W S}$ $[\mathrm{mb}]$	$\sigma_{k n}^{G F}$ $[\mathrm{mb}]$	$C^{2} S_{G F}$
${ }^{14} \mathrm{O}\left(\pi 1 \mathrm{p}_{3 / 2}\right)$	8.877	2.856	2.961	6.785	7.172	$\underbrace{27.38}_{5 \%} 28.60$	$\underbrace{27.19}_{<1 \%}$	27.42	0.548	

cross section calculation
for different wavefunctions

$$
\left(\sigma_{G F}-\sigma_{W S}\right) / \sigma_{W S}
$$

Collaboration with C. Bertulani

«lmaginary» Parameter

$$
\begin{aligned}
& \left.\Gamma(E)=\frac{1}{\pi} \frac{a\left(E-E_{F}\right)^{2}}{\left(E-E_{F}\right)^{2}-b^{2}} \quad b=22.36 \mathrm{MeV}\right) \\
& 0.001
\end{aligned}
$$

${ }^{16} \mathrm{O}$ neutron propagator

Volume integrals

$$
\begin{aligned}
& \left.J_{W}^{\ell}(E)=4 \pi \int d r r^{2} \int d r^{\prime} r^{\prime 2} \operatorname{Im} \Sigma_{0}^{\ell}(r, r) E\right) \\
& J_{V}^{\ell}(E)=4 \pi \int d r r^{2} \int d r^{\prime} r^{\prime 2} \operatorname{Re} \Sigma_{0}^{\ell}\left(r, r^{\prime} ; E\right)
\end{aligned}
$$

$$
\tilde{\Sigma}_{n_{a}, n_{b}}^{\ell j}(E)=\sum_{r} \frac{m_{n_{a}}^{r} m_{n_{b}}^{r}}{E-\varepsilon_{r} \pm i \eta}
$$

different Fermi energies and particle-hole gap for different interactions
S. Waldecker et al. PRC84, 034616(2011)
$\mathrm{NNLO}_{\text {sat }}$ neutron comparison

Ca isotopes

neutron and proton volume integrals of self energies.

${ }^{16} \mathrm{O}$ and ${ }^{24} \mathrm{O}$

