Analysis of ¹⁰Li and ¹¹Li through intermediate-energy (p, pn) and low-energy transfer reactions

<u>M. Gómez-Ramos</u>¹, J. Casal², A. M. Moro³

 ¹ Institut für Kernphysik, Technische Universität Darmstadt,S2—14,Schlossgartenstrasse 9, 64289, Darmstadt
 ² Dipartimento di Fisica e Astronomia "G. Galilei" and INFN-Sezione di Padova, Via Marzolo, 8, I-35131 Padova, Italy
 ³ Departamento de FAMN, Facultad de Física, Universidad de Sevilla,Apdo. 1065, E-41080 Sevilla, Spain

March 26, 2020

Unterstützt von / Supported by

Contents

Borromean nuclei. ¹¹Li

- **2** $p(^{11}\text{Li}, d)^{10}\text{Li}$
 - Overlap function
 - Results

$\bigcirc p(^{11}\text{Li},pn)^{10}\text{Li}$

- Transfer to Continuum
- Results
- *d*-wave

⁴ $^{9}\text{Li}(d,p)^{10}\text{Li}$

- Experimental data
- Results

5 Conclusions

Unterstützt von / Supported by

M.G.-R., J.C., A.M.M.

Contents

Borromean nuclei. ¹¹Li

2 $p(^{11}\text{Li}, d)^{10}\text{Li}$

- Overlap function
- Results

$\bigcirc p(^{11}\text{Li},pn)^{10}\text{Li}$

- Transfer to Continuum
- Results
- *d*-wave

4 ${}^{9}\text{Li}(d,p)^{10}\text{Li}$

- Experimental data
- Results

5 Conclusions

Unterstützt von / Supported by

M.G.-R., J.C., A.M.M.

Borromean nuclei

- 3-body system bound, but 2-body subsystems unbound
- Close to neutron (proton) driplines
- Halo structure

Unterstützt von / Supported by

¹¹Li,¹⁰Li

• Halo structure

I. Tanihata et al, PRL 55, 2676 (1985)

• Unclear Structure

Table 2

Results of various experiments for low-lying states of $^{10}\mathrm{Li}$ (Energies and widths in MeV).

Year	Reaction	Er	Г	l	Ref.
1997	¹⁰ Be(¹² C, ¹² N)	0.24(4)	0.10(7)		[10]
1999	⁹ Be(⁹ Be, ⁸ B)	0.50(6)	0.40(6)		[8]
1999	fragmentation	< 0.05		s	[9]
2001	p removal from ¹¹ Be			g.s. is s	[11]
2003	⁹ Li(d, p)	0.35(11)	< 0.32		[7]
		or <0.2	-		
		plus 0.77(24)	<0.62		
2006	${}^{9}\text{Li}(d, p)$	~0		S	[12]
		~0.38	~0.2	р	
2015	2p removal from ¹² B	0.11(4)	0.2		[13]
		0.50(10)	0.8	both p	

H.T. Fortune PLB 760, 577 (2016)

• Parity inversion

From: P.G. Hansen and J.A. Tostevin, Ann Rev Nucl Part Sci 53 (2003) 219

$p(^{11}\mathrm{Li}, d)^{10}\mathrm{Li}$

Contents

- **2** $p(^{11}\text{Li}, d)^{10}\text{Li}$
 - Overlap function
 - Results

3 $p(^{11}\text{Li},pn)^{10}\text{Li}$

- Transfer to Continuum
- Results
- *d*-wave

⁹Li $(d, p)^{10}$ Li

- Experimental data
- Results

Unterstützt von / Supported I

Stiftung/Foundation

$p(^{11}\text{Li}, d)^{10}\text{Li}$

$p(^{11}\text{Li}, d)^{10}\text{Li} @ 5.7 \text{ MeV/A}$

• Participant-spectator model

• DWBA formalism

 $\mathcal{T}_{if} = \left\langle \chi_{d^{10}\mathrm{Li}} \varphi_d \phi_{^{10}\mathrm{Li}}(E_{^{10}Li}) | V_{pn} | \chi_{p^{11}\mathrm{Li}} \phi_{^{11}\mathrm{Li}} \right\rangle$

• Spectator model (¹⁰Li not modified by reaction)

$$\begin{split} \mathcal{T}_{if} &\sim \left\langle \chi_{d^{10}\text{Li}}\varphi_{d}|V_{pn}|\chi_{p^{11}\text{Li}}\varphi_{lj}(E_{^{10}\text{Li}})\right\rangle_{\text{weath}}\\ \varphi_{lj} &= <\phi_{^{10}\text{Li}}(E_{^{10}\text{Li}})|\phi_{^{11}\text{Li}}> & \text{Alexander von Humbold}\\ \text{Stiffunorfeundation} \end{split}$$

Overlap function $\langle \phi_{10Li}(E_{10Li}) | \phi_{11Li} \rangle$

$$\left|^{11}\mathrm{Li}\right\rangle$$

- Only ground state needed $(B_{3b} = 396 \text{keV})$
- 3-body calculation $({}^{9}\text{Li}+n+n)$
- $V_{n^9\text{Li}}, V_{nn}, V_{nn^9\text{Li}}$
- Expansion in a transformed harmonic oscillator (THO) basis with hyperspherical harmonic functions

•
$$J^{\pi} = 0^+$$
 (w/o ⁹Li Spin)
 $J^{\pi} = 3/2^-$ (w/ ⁹Li Spin)

 $\langle ^{10}\mathrm{Li}|$

- Unbound (all positive energies possible)
- E_{10Li} = 0 − 3 MeV considered

• Scattering states for
$$V_{n^9\text{Li}}$$

• $J^{\pi} = 1/2^+, 1/2^-$ (w/o ⁹Li Spin) $J^{\pi} = 1^{-}, 2^{-}, 1^{+}, 2^{+}$ (w/⁹Li Spin)

	$E_r ({\rm MeV})$		$a \ (fm)$		$\% p_{1/2}$	$\% s_{1/2}$	r_{mat} (fm)	r_{ch} (fm)	
	1^{+}	2^{+}	1^{-}	2^{-}					
P1I	0.37	0.61	—	-37.9	31	67	3.2	2.41	
P2I	0.30	0.55	-1.1	-6.7	44	54	3.0	2.40	-
$\mathbf{P3}$	0.	50	-2	9.8	30	64	3.6	2.48	
$\mathbf{P4}$	0.	23	-1	6.2	67	26	3.3	$2.43^{ ext{bxander von Humb}}_{ ext{Stiftung/Foundation}}$	olo atio

¹⁰Li-energy distributions

Deuteron angular distribution

erstützt von / Supported b

mexander von Humboldt

Deuteron angular distribution

- Shape of distribution independent of the model
- Data compatible with *p*-wave transferred neutron
- Data sensitive to weight of *p*-wave component
- Mostly insensitive to other characteristics of ¹¹Li wf

Unterstützt von / Supported I

$p(^{11}{\rm Li},pn)^{10}{\rm Li}$

Contents

- 🚺 Borromean nuclei. ¹¹Li
- **2** $p(^{11}\text{Li}, d)^{10}\text{Li}$
 - Overlap function
 - Results
- $\bigcirc p(^{11}\text{Li},pn)^{10}\text{Li}$
 - Transfer to Continuum
 - Results
 - *d*-wave

4 ${}^{9}\text{Li}(d,p)^{10}\text{Li}$

- Experimental data
- Results

5 Conclusions

Unterstützt von / Supported by

$p(^{11}{\rm Li},pn)^{10}{\rm Li}$

(p, pN) reactions

- A proton and a nucleus collide in such a way that a proton or neutron is removed and the residual nucleus remains.
- High energies ($\sim 200\text{-}400 \text{ MeV}$) to increase mean free path of nucleon in nucleus.
- It is sometimes referred to as "quasifree" because the main interaction happens between the incoming proton and the extracted nucleon as if it was a free collision.
- This "quasifree" characteristic allows for the use of the participant-spectatory model Alexander von Hu

Reaction formalism: Transfer to Continuum

• Prior representation of the T-matrix for the process $p+A(B+N+N) \rightarrow p+N+C(B+N)$ (participant-spectator model)

$$\mathcal{T}_{if}^{3b} = \left\langle \Psi_f^{3b(-)} | V_{pN} + U_{pC} - U_{pA} | \varphi_{CA} \chi_{pA}^{(+)} \right\rangle$$

• p-N continuum states discretized in energy bins Deuteron included for (p, pn)

$$\phi_n^{j,\pi}(k_n,\vec{r}') = \sqrt{\frac{2}{\pi N}} \int_{k_{n-1}}^{k_n} \phi_n^{j,\pi}(k,\vec{r}') \mathrm{d}k$$

• 3-body final state wavefunction expanded in proton-nucleon states

$$\Psi_{f}^{3b(-)} \approx \sum_{n,j,\pi} \phi_{n}^{j,\pi}(k_{n},\vec{r}') \chi_{n,j,\pi}^{(-)}(\vec{K_{pn}}',\vec{R}')$$

Alexander von Humboldt Stiftung/Foundation

$p(^{11}Li,pn)^{10}Li @ 280 MeV/A$

Y. Aksyutina *et al*, PLB 666, 430 (2008)

a	-22.4(4.8) fm	Er	0.566(14) MeV	H target
e	0.352(22) MeV	Γ	0.548(30) MeV	
а	-30 ⁺¹² ₋₃₁ fm	Er	0.510(44) MeV	C target [5]
е	0.3 MeV	Γ	0.54(16) MeV	
a	$-24 \leqslant a \leqslant -13$ fm	Er	$\approx 0.4 \text{ MeV}$	⁹ Li(d, p) [4]
e	not given	Γ	$\approx 0.2 \text{ MeV}$	

- Obtained through fitting
- No prediction of absolute cross section
- Relative weight of s and p weight cannot be known
- Distorsion of distribution due to reaction mechanism?

Transfer to the Continuum calculations

• No ⁹Li Spin model: P3

Transfer to the Continuum calculations

• ⁹Li Spin model: P1I

Results of calculation

- The two potentials best agreeing with $p(^{11}\text{Li},d)^{10}\text{Li}$ are presented
- $p(^{11}\text{Li},pn)^{10}\text{Li}$ gives a better agreement with P1I
- Main difference is the splitting of the virtual state
- Experimental resolution smoothes out distribution, hiding features

$p(^{11}\mathrm{Li},pn)^{10}\mathrm{Li}$ d-wave

Low-energy *d*-wave?

• Is there a *d*-wave resonance at ~ 1.5 MeV?

Unterstützt von / Supported by

$p(^{11}{\rm Li},pn)^{10}{\rm Li}$

d-wave

¹¹Li $(p, pn)^{10}$ Li*: $I_{9Li} = 0 + d$ wave

Alexander von Humboldt

$p(^{11}\mathrm{Li}, pn)^{10}\mathrm{Li}$ d-wave

${}^{11}\text{Li}(p, pn){}^{10}\text{Li}^*: d$ -wave?

M.G.-R., J.C., A.M.M.

¹¹Li and ¹⁰Li

March 26, 2020 21 / 34

$p(^{11}{\rm Li},pn)^{10}{\rm Li}$ d-wave

${}^{11}\text{Li}(p,d){}^{10}\text{Li}^*: d\text{-wave}?$

• Are there other reactions to discern between these two models?

terstützt von / Supported

${}^{9}{ m Li}(d, p){}^{10}{ m Li}$

Contents

- 🚺 Borromean nuclei. ¹¹Li
- **2** $p(^{11}\text{Li}, d)^{10}\text{Li}$
 - Overlap function
 - Results
- 3 $p(^{11}\text{Li},pn)^{10}\text{Li}$
 - Transfer to Continuum
 - Results
 - *d*-wave

$\textcircled{9}{\rm Li}(d,p)^{10}{\rm Li}$

- Experimental data
- Results

5 Conclusions

Unterstützt von / Supported by

${}^{9}\mathrm{Li}(d,p){}^{10}\mathrm{Li}$

• The explored spectrum is no longer limited by $<^{11}$ Li(g.s.)|^{10}Li >, instead $<^{9}$ Li(g.s.)|^{10}Li >

Transfer to Continuum, slightly different

• Prior representation of the T-matrix for the process $d + B \rightarrow p + A(N+B)$ (participant-spectator model)

$$\mathcal{T}_{if}^{3b} = \left\langle \Psi_f^{3b(-)} | V_{NB} + U_{pB} - U_{dB} | \varphi_{AB} \chi_{dB}^{(+)} \right\rangle$$

• N-B continuum states discretized in energy bins and allowed to couple

$$\phi_n^{j,\pi}(k_n, \vec{r}') = \sqrt{\frac{2}{\pi N}} \int_{k_{n-1}}^{k_n} \phi_n^{j,\pi}(k, \vec{r}') \mathrm{d}k$$

• 3-body final state wavefunction expanded in neutron-⁹Li states

$$\Psi_{f}^{3b(-)} \approx \sum_{n,j,\pi} \phi_{n}^{j,\pi}(k_{n},\vec{r'})\chi_{n,j,\pi}^{(-)}(\vec{K_{NB}}',\vec{R'})$$

Stiftung/Foundation

${}^{9}\mathrm{Li}(d,p){}^{10}\mathrm{Li}$ Results

P3: warmup

• At 2.4 MeV/A, the maximum energy is too low to explore the spectrum over ~1 MeV, we will not get the *d*-wave resonance from there

M.G.-R., J.C., A.M.M.

¹¹Li and ¹⁰Li

Alexander von Humboldt Stiftung/Foundation

Results

Different spectra: Angular ranges

• Different angular ranges emphasize different components

P3 vs P5: Low-energy *d*-wave resonance?

• Strong coupling to *d*-wave states, this rules out a defined low-energy resonance (it could be fragmented)

M.G.-R., J.C., A.M.M.

P1I: Ambiguities in the l = 2 contribution

• $(1^-, 2^-, 3^-, 4^-)$ multiplet, too many free parameters to adjust phenomenologically, and too few data.

Unterstützt von / Supported by

${}^{9}\mathrm{Li}(d, p){}^{10}\mathrm{Li}$

Results

NFT calculations

F. Barranco et al, PRC 101, 031305(R) (2020)

Unterstützt von / Supported I

Contents

- 🚺 Borromean nuclei. ¹¹Li
- **2** $p(^{11}\text{Li}, d)^{10}\text{Li}$
 - Overlap function
 - Results
- $\bigcirc p(^{11}\text{Li},pn)^{10}\text{Li}$
 - Transfer to Continuum
 - Results
 - *d*-wave

4 ${}^{9}\text{Li}(d,p){}^{10}\text{Li}$

- Experimental data
- Results

Unterstützt von / Supported by

Conclusions

Conclusions

- A method to obtain < C + N | C + N + N > overlaps for Borromean nuclei from 3-body structure calculations has been developed and applied to ¹¹Li.
- These overlaps can be used for various reactions, as long as they verify the participant-spectator model for the components of the Borromean nucleus
- The method has been applied for the reactions $p({}^{11}\text{Li}, d){}^{10}\text{Li}$ at 5.7 MeV/A, $p({}^{11}\text{Li}, pn){}^{10}\text{Li}$ at 280 MeV/A, and ${}^{9}\text{Li}(d, p){}^{10}\text{Li}$ at 2.4 and 11.1 MeV/A obtaining remarkable agreement for all reactions, using the same $n{}^{-9}\text{Li}$ interaction.
- The (p, d) transfer reaction is found to be sensitive to the angular momentum and spectroscopic factor of the transferred nucleon mostly.
- The (p, pn) nucleon removal reaction seems to favour a description including the spin of ⁹Li and splitting of the virtual state and resonance or the inclusion of low-energy *d*-wave resonance
- The ${}^{9}\text{Li}(d, p){}^{10}\text{Li}$ transfer rejects low-energy *d*-wave resonance, but the *d*-wave spectrum is still not well understood (${}^{10}\text{Li}$ always laughs last).

Conclusions

 ${}^{14}\text{Be}(p, pn){}^{13}\text{Be}^*$, A. Corsi *et al*, PLB **797**, 134843 (2019)

