Progress in microscopic description of nucleon-nucleus elastic scattering at lowenergy

Reaction Seminars

T. V. Nhan Hao

Hue University

K. Mizuyama, N. Hoang Tung Duy Tan University

 Nuclear physics: Nuclear structure, Nuclear reactions and 3-body problems

NA optical model potential

Phenomenological

- F. G. Perey, and H. Buck, Nucl. Phys **32** (1962)
- A. J. Koning, and J. P. Delaroche, NPA **713** (2003)
- W. Dickhoff *et al.*, PPNP (2019)
- Microscopic
 - ab initio
 - A. Idini, C. Barbieri, and P. Navrátil, PRL **123** (2019)
 - nuclear structure approaches
 - N. Vinh Mau *et al.*, NPA **257** (1976)
 - V. Bernard, and N. Van Giai, NPA **327** (1979)
 - G. Blanchon *et al.*, PRC **91** (2015)
 - K. Mizuyama, and K. Ogata, PRC 86 (2012)
 - T. V. Nhan Hao, B. M. Loc, N. H. Phuc, PRC 92 (2015)
 - G. P. A. Nobre *et al.*, PRC **84** (2011)
 - nuclear matter approaches
 - M. Dupuis *et al.*, PRC **73** (2006)
 - M. Toyokama *et al.*, PRC **92** (2015)
 - coupled-cluster method
 - J. Rotureau *et al.*, PRC **98** (2018)

J^{π}	HF-RPA		Experiment	
	Energy (MeV)	$B(EL, 0 \to L)$ $(e^2 \mathrm{fm}^{2L})$	Energy (MeV)	$B(EL, 0 \to L)$ $(e^2 \mathrm{fm}^{2L})$
2^{+}_{1}	5.09	3.10×10^{3}	4.09	3.18×10^{3}
3^{-}_{1}	3.49	6.96×10^{5}	2.61	6.11×10^{5}
4^{+}_{1}	5.59	1.48×10^{7}	4.32	1.55×10^{7}
5^{-}_{1}	4.45	5.31×10^{8}	3.19	4.47×10^{8}

• G. Colo *et al.* PRC **82**, 064307 (2010)

T. V. Nhan Hao et al. PRC 92, 014605 (2015)

V. Bernard *et al.*, NPA **327**, (1979)

Imaginary part is too weak at the surface as well as in the interior

Bernard 1979

- SIII, full, $\alpha = 1$
- 0+,2+,3-,4+,5- (IS)
- 0+,1⁻,2+ (IV)
- 72% for 3⁻ and 77% for 4⁺
- E < 30 MeV, ε < 50 MeV
- SIII but t0, t3 only
 - Low-energy, complex
 - Non-local, energy dependent
 - Double counting treated
 - Without adjusted parameter
 - Non self-consistent
- Local equivalent potential
- 208Pb
- UNIVAC-1110 Orsay

V. Bernard et al., NPA 327, (1979)

Hao 2015

- SLy5, full, α = 1/6
- 0⁺,1⁻,2⁺,3⁻,4⁺,5⁻ (IS and IV)
- 99.50% for 3⁻, 4⁺
- E < 50 MeV, ε < 50 MeV
- SLy5, full
- Low-energy, complex
- Non-local, energy dependent
- Double counting treated
- Without adjusted parameter
- Fully self-consistent
- Nonlocality is explicitly treated by DWBA98
- ¹⁶O, ⁴⁰Ca, ⁴⁸Ca, ²⁰⁸Pb
- Personal Computer

T. V. Nhan Hao *et al.* PRC **92**, 014605 (2015) Li-Gang Cao *et al.* PRC **82**, 064307 (2014) J. Raynal, DWBA98, NEA (1998)

Imaginary part of the MOP

V. Bernard *et al.*, NPA **327**, (1979)

T. V. Nhan Hao et al. PRC 92, 014605 (2015)

Imaginary part of the MOP

Neutron elastic scattering with MOP

T. V. Nhan Hao *et al.* PRC **92**, 014605 (2015)

Neutron elastic scattering

T. V. Nhan Hao et al. IJMPE (2018)

Proton elastic scattering

Premilinary results

Neutron elastic scattering

Premilinary results

(n,n)¹¹⁶Sn

(n,n)¹¹⁶Sn

Summary

- Hard to have a high precision optical potential within the microscopic models
- A link between the nuclear structure and reaction

Perspectives

- Sensitivity of nuclear reactions observables directly on Skyrme parameters, the role of each terms of Skyrme interactions
- New generation of optical potential
- Separable form for indirect technique such as (d,p) reactions using Faddeev-AGS equations, inelastic scattering

Thank you

- IPN Orsay
 - N. Van Giai, G. Colo (Milan)
- INST Hanoi
 - D. T. Khoa, Bui Minh Loc, Nguyen Hoang Phuc
- University of Pedagogy HCM City
 - Vinh N. T. Pham
- Hue University
 - T. Dieu Thuy