May 21st, 2020 Reaction Seminar

# Dynamics and decay of three-body nuclei

# Jesús Casal





Università degli Studi di Padova







- Three-body hyperspherical harmonics (HH) formalism
  - Jacobi and hyperspherical coordinates
  - > WF expansion and pseudostate method
- Ø Borromean two-neutron halo nuclei
  - Island of inversion
  - Possible halo and g.s. properties of <sup>29</sup>F
  - $\succ$  E1 response and Coulomb dissociation
- 8 Advanced reaction theory with three-body projectiles
  - ➤ Four-body CDCC (<sup>9</sup>Be, <sup>10</sup>C)
- Decay of three-body resonances
  - Resonance operator and identification in a discrete basis
  - Two-neutron emitters; nn relative energy spectrum
  - ➤ Application to <sup>16</sup>Be



$$\Psi^{j\mu}(\rho,\Omega) = \rho^{-5/2} \sum_{\beta} \chi^{j}_{\beta}(\rho) \mathcal{Y}^{j\mu}_{\beta}(\Omega) \qquad \qquad \beta \equiv \{K, l_x, l_y, l, S_x, J; I\}$$

Hyperspherical Harmonics (HH) expansion

hypermomentum  $\widehat{K}$ 

$$\mathcal{V}_{\beta}^{j\mu}(\Omega) = \left[ \left( \Upsilon_{Klm_{l}}^{l_{x}l_{y}}(\Omega) \otimes \kappa_{S_{x}} \right)_{J} \otimes \phi_{I} \right]_{j\mu} \\ \Upsilon_{Klm_{l}}^{l_{x}l_{y}}(\Omega) = \varphi_{K}^{l_{x}l_{y}}(\alpha) \left[ Y_{l_{x}}(\widehat{x}) \otimes Y_{l_{y}}(\widehat{y}) \right]_{lm_{l}} \\ \varphi_{K}^{l_{x}l_{y}}(\alpha) = N_{K}^{l_{x}l_{y}} \left( \sin \alpha \right)^{l_{x}} \left( \cos \alpha \right)^{l_{y}} P_{n}^{l_{x} + \frac{1}{2}, l_{y} + \frac{1}{2}} \left( \cos 2\alpha \right)$$



$$\Psi^{j\mu}(\rho,\Omega) = \rho^{-5/2} \sum_{\beta} \chi^{j}_{\beta}(\rho) \mathcal{Y}^{j\mu}_{\beta}(\Omega) \qquad \qquad \beta \equiv \{K, l_x, l_y, l, S_x, J; I\}$$

Hyperspherical Harmonics (HH) expansion

hypermomentum  $\widehat{K}$ 

$$\begin{aligned} \mathcal{Y}_{\beta}^{j\mu}(\Omega) &= \left[ \left( \Upsilon_{Klm_{l}}^{l_{x}l_{y}}(\Omega) \otimes \kappa_{S_{x}} \right)_{J} \otimes \phi_{I} \right]_{j\mu} \\ &\qquad \Upsilon_{Klm_{l}}^{l_{x}l_{y}}(\Omega) = \varphi_{K}^{l_{x}l_{y}}(\alpha) \left[ Y_{l_{x}}(\widehat{x}) \otimes Y_{l_{y}}(\widehat{y}) \right]_{lm_{l}} \\ &\qquad \varphi_{K}^{l_{x}l_{y}}(\alpha) = N_{K}^{l_{x}l_{y}} \left( \sin \alpha \right)^{l_{x}} \left( \cos \alpha \right)^{l_{y}} P_{n}^{l_{x}+\frac{1}{2},l_{y}+\frac{1}{2}} \left( \cos 2\alpha \right) \end{aligned}$$

Hyperradial functions are the solution of the coupled equations:

$$\left[-\frac{\hbar^2}{2m}\left(\frac{d^2}{d\rho^2}-\frac{15/4+K(K+4)}{\rho^2}\right)-\varepsilon\right]\chi^j_\beta(\rho)+\sum_{\beta'}V^{j\mu}_{\beta'\beta}(\rho)\chi^j_{\beta'}(\rho)=0$$

with coupling potentials  $V^{j\mu}_{\beta'\beta}(\rho)$ . Model space defined by a given  $K_{max}$ 

$$V^{j\mu}_{\beta'\beta}(\rho) = \left\langle \mathcal{Y}^{j\mu}_{\beta}(\Omega) \middle| V_{12} + V_{13} + V_{23} \middle| \mathcal{Y}^{j\mu}_{\beta'}(\Omega) \right\rangle$$

# $\succ$ $V_{ij}$ interaction between pairs

central, spin-orbit, spin-spin, tensor. To reproduce binary subsystem

$$V^{j\mu}_{\beta'\beta}(\rho) = \left\langle \mathcal{Y}^{j\mu}_{\beta}(\Omega) \middle| V_{12} + V_{13} + V_{23} \middle| \mathcal{Y}^{j\mu}_{\beta'}(\Omega) \right\rangle + \delta_{\beta\beta'} V_{3b}(\rho)$$

# $\succ$ $V_{ij}$ interaction between pairs

central, spin-orbit, spin-spin, tensor. To reproduce binary subsystem

#### > $V_{3b}$ phenomenological three-body force

diagonal term. Fixed to fine-tune the three-body energies

$$V^{j\mu}_{\beta'\beta}(\rho) = \left\langle \mathcal{Y}^{j\mu}_{\beta}(\Omega) \middle| V_{12} + V_{13} + V_{23} \middle| \mathcal{Y}^{j\mu}_{\beta'}(\Omega) \right\rangle + \delta_{\beta\beta'} V_{3b}(\rho)$$

# > $V_{ij}$ interaction between pairs

central, spin-orbit, spin-spin, tensor. To reproduce binary subsystem

### > $V_{3b}$ phenomenological three-body force

diagonal term. Fixed to fine-tune the three-body energies



#### Analytical Transformed Harmonic Oscillator (THO) basis



#### Analytical Transformed Harmonic Oscillator (THO) basis



Example:

 $\Psi_n^{j\mu}(\rho,\Omega)$  PS spectra,  $\varepsilon_n$  $b = 0.7 \; {\rm fm}$ 

The ratio  $\gamma/b$  controls the density of PS as a function of the energy.



#### Example: <sup>9</sup>Be photodissociation



good description of resonant spectra [PRC90(2014)044304]

Three-body nuclei HH formalism

In a practical case:



• Choose (or fit) binary interactions  $V_{ij}$ 

Use exp. data if possible (e.g. phase shifts, two-body energies)

- Diagonalize 3b Hamiltonian in a given basis (e.g. THO functions)
- Section 2018 Ensure convergence of calculations, in particular for the g.s.

 $K_{max}$ : size of the model space

N: number of basis functions

After covergence, possibly add three-body force  $V_{3b}(\rho)$ 

Our Use PS to compute observables

(e.g.  $B(\mathcal{O}\lambda), \ldots$ )

 $\Rightarrow$  plug WF in reaction models to get cross sections

| $^{30}\mathrm{Al}$ | $^{31}\mathrm{Al}$ | $^{32}Al$         | <sup>33</sup> Al   | <sup>34</sup> Al   | <sup>35</sup> Al   | <sup>36</sup> Al |
|--------------------|--------------------|-------------------|--------------------|--------------------|--------------------|------------------|
| $^{29}\mathrm{Mg}$ | $^{30}\mathrm{Mg}$ | $^{31}Mg$         | $^{32}Mg$          | $^{33}Mg$          | $^{34}\mathrm{Mg}$ | $^{35}Mg$        |
| $^{28}$ Na         | $^{29}$ Na         | $^{30}$ Na        | $^{31}$ Na         | $^{32}$ Na         | $^{33}$ Na         | <sup>34</sup> Na |
| $^{27}\mathrm{Ne}$ | $^{28}\mathrm{Ne}$ | <sup>29</sup> Ne  | $^{30}\mathrm{Ne}$ | $^{31}\mathrm{Ne}$ | $^{32}\mathrm{Ne}$ | <sup>33</sup> Ne |
| $^{26}\mathrm{F}$  | $^{27}\mathrm{F}$  | $^{28}\mathrm{F}$ | <sup>29</sup> F    | <sup>30</sup> F    | $^{31}F$           |                  |
| N = 20             |                    |                   |                    |                    |                    |                  |

Island of inversion

Mg, Na, Ne isotopes around N = 20

Some degree of sd, pf mixing



| $^{30}\mathrm{Al}$ | $^{31}\mathrm{Al}$ | $^{32}Al$         | <sup>33</sup> Al   | <sup>34</sup> Al   | <sup>35</sup> Al   | <sup>36</sup> Al |
|--------------------|--------------------|-------------------|--------------------|--------------------|--------------------|------------------|
| $^{29}\mathrm{Mg}$ | $^{30}\mathrm{Mg}$ | $^{31}Mg$         | $^{32}Mg$          | $^{33}Mg$          | $^{34}{ m Mg}$     | $^{35}Mg$        |
| $^{28}$ Na         | $^{29}$ Na         | <sup>30</sup> Na  | <sup>31</sup> Na   | <sup>32</sup> Na   | <sup>33</sup> Na   | <sup>34</sup> Na |
| $^{27}\mathrm{Ne}$ | $^{28}\mathrm{Ne}$ | <sup>29</sup> Ne  | $^{30}\mathrm{Ne}$ | $^{31}\mathrm{Ne}$ | $^{32}\mathrm{Ne}$ | <sup>33</sup> Ne |
| $^{26}\mathrm{F}$  | $^{27}\mathrm{F}$  | $^{28}\mathrm{F}$ | <sup>29</sup> F    | <sup>30</sup> F    | $^{31}F$           |                  |
| N = 20             |                    |                   |                    |                    |                    |                  |

#### Island of inversion

Mg, Na, Ne isotopes around N = 20

Some degree of sd, pf mixing

# $\Rightarrow$ F: southern shore of the island!

| <sup>29</sup> F is Borromean!   |
|---------------------------------|
| $({}^{27}F + n + n)$            |
| $\Rightarrow three-body  model$ |



The shell gap,  $\Delta E$ . associated with the filling of 20 neutrons. disappears and one level (or more) of the N=3 pf-shell gets lower than one (or more) of the levels of the N=2 sd-shell.

(Figure by L. Fortunato)

(the past)

Christian et al. (2012)  ${}^{29}\text{Ne}(-1p)$  on beryllium target

PRL108(2012)032501
 Exploring the Low-Z Shore of the Island of Inversion at N = 19

 PRC85(2012)034327
 Sectore and content on the sectore and content of the

Spectroscopy of neutron-unbound  $^{27,28}F$ 

Invariant mass spectroscopy for  $^{27}\mathrm{F}+n$ 



"The measured <sup>28</sup>F ground state energy is in good agreement with USDA/USDB shell model predictions, indicating that pf shell intruder configurations play only a small role in the ground state structure of <sup>28</sup>F and establishing a low-Z boundary of the island of inversion for N = 19 isotones"

# The NN interaction in <sup>29</sup>F brings the system back to a bound g.s.



 $> S_{2n}(^{29}\text{F}) = 1.443(436) \text{ MeV}$ ; Gaudefroy et al. [PRL**109**(2012)202503]

#### The NN interaction in <sup>29</sup>F brings the system back to a bound g.s.



 $> S_{2n}(^{29}\text{F}) = 1.443(436) \text{ MeV}$ ; Gaudefroy et al. [PRL**109**(2012)202503]



Excited state at  $E_x = 1.080(18)$  MeV Doornenbal et al. [PRC**95**(2017)041301] SDPF shell-model calculations "... indicate that the N = 20 gap is quenched for <sup>29</sup>F, thus extending the 'island of inversion' to isotopes with proton number Z = 9."

# (the present)

Our work: three-body  $(^{27}{\rm F}+n+n)~{\rm HH}$  calculations for  $^{29}{\rm F}$ 

> Need n-27 F interaction



Inert core approx.

We consider different scenarios:

- A: standard shell-model
- B: intruder (low gap)
- C: degenerate (1d<sub>3/2</sub> and 2p<sub>3/2</sub>)
- D: extremely inverted

(inspired by Christian's two-peak data)

Standard Woods-Saxon parametrization [PRC102(2020)24310]



Solve the HH problem in the Jacobi T system

- core + n potentials A, B, C, D
- *n*-*n* interaction: GPT (tensor potential; PLB32(1970)591)

For simplicity, we ignore the spin of the core  $\Rightarrow$  g.s. is 0<sup>+</sup> (possible core excitations effectively through  $\ell$ -dependent potential)

#### Pauli states

Our core+n potentials produce  $1s_{1/2}$ ,  $1p_{3/2}$ ,  $1p_{1/2}$ ,  $1d_{5/2}$  and  $2s_{1/2}$  bound states which represent the fully occupied neutron orbitals of the core.

Removed using a supersymmetric transformation (phase equiv. potentials)

> In addition, (small) three-body force (Gaussian) to fix  $S_{2n}$ 

#### Convergence of the ground state





$$\begin{split} K_{max} &= 30\\ N &= 20 \end{split}$$

Wave function (and probability) well converged

(using set A: standard)

# xy-probability:

 $\Psi_{g.s.}(\rho,\Omega) \to \Psi_{g.s.}(\boldsymbol{x},\boldsymbol{y})$ 

dineutron and cigar-like (set A: ratio close to 1)



#### xy-probability:

 $\Psi_{g.s.}(\rho,\Omega) \to \Psi_{g.s.}(\boldsymbol{x},\boldsymbol{y})$ 

dineutron and cigar-like (set A: ratio close to 1)

Rotation to SM-like basis:



(Reynal-Revai coeff.)



small mixing with pf intruder

 $\Delta R = R_m - R(^{27}{\rm F}) = 0.105~{\rm fm} \label{eq:alpha}$  little room for a 2n halo



Dineutron enhancement with sets B and C (ratio  $\sim$  2)

Correlations due to mixing!

#### More details in:

Jagjit Singh, J. Casal, W. Horiuchi, L. Fortunato and A. Vitturi [PRC**100**(2020)024310]

| % | $(d_{3/2})^2$ | $(f_{7/2})^2$ | $(p_{3/2})^2$ | $\Delta R$ (fm) |
|---|---------------|---------------|---------------|-----------------|
| А | 81.3          | 8.4           | 6.8           | 0.105           |
| В | 50.7          | 21.1          | 21.6          | 0.129           |
| С | 45.4          | 7.4           | 39.8          | 0.162           |
| D | 4.2           | 2.1           | 85.4          | 0.241           |



Dineutron enhancement with sets B and C (ratio  $\sim$  2) Correlations due to mixing!  $R_m$  increases with  $(p_{3/2})^2$ 

 $\Delta R$  values support moderate halo linked to parity inversion

(resembles <sup>11</sup>Li and its large *s*-wave intruder component)

More details in:

Jagjit Singh, J. Casal, W. Horiuchi, L. Fortunato and A. Vitturi [PRC**100**(2020)024310]

| % | $(d_{3/2})^2$ | $(f_{7/2})^2$ | $(p_{3/2})^2$ | $\Delta R$ (fm) |
|---|---------------|---------------|---------------|-----------------|
| A | 81.3          | 8.4           | 6.8           | 0.105           |
| B | 50.7          | 21.1          | 21.6          | 0.129           |
| C | 45.4          | 7.4           | 39.8          | 0.162           |
| D | 4.2           | 2.1           | 85.4          | 0.241           |

Recently... new data arrived! Revel et al. [PRL124(2020)152502]

a)  $^{29}Ne(-1p)$  and b)  $^{29}F(-1n)$  on a proton target



Recently... new data arrived! Revel et al. [PRL124(2020)152502]

a)  $^{29}Ne(-1p)$  and b)  $^{29}F(-1n)$  on a proton target



# (the future)

New potential set  $D^{\flat}$ : inverted,  $2p_{3/2}$  and  $1d_{3/2}$  fixed to Revel's data



# (the future)

New potential set  $D^\flat\colon$  inverted,  $2p_{3/2}$  and  $1d_{3/2}$  fixed to Revel's data



Repeat 3b calculations:



Mixing in <sup>29</sup>F:

| $(d_{3/2})^2$ | $(f_{7/2})^2$ | $(p_{3/2})^2$ | $\Delta R$ (fm) |
|---------------|---------------|---------------|-----------------|
| 28.1%         | 6.0%          | 57.5%         | 0.192           |

# (the future)

New potential set  $D^{\flat}$ : inverted,  $2p_{3/2}$  and  $1d_{3/2}$  fixed to Revel's data



Repeat 3b calculations:



Mixing in <sup>29</sup>F:

| $(d_{3/2})^2$ | $(f_{7/2})^2$ | $(p_{3/2})^2$ | $\Delta R$ (fm) |
|---------------|---------------|---------------|-----------------|
| 28.1%         | 6.0%          | 57.5%         | 0.192           |

Strong dineutron component Significant  $\Delta R$  value

 $\Rightarrow 2n$  halo in <sup>29</sup>F(g.s.)

- Large interaction cross sections [S. Bagchi et al., PRL (accepted)]
- Enhancement of low-energy electric dipole (E1) response



- Large interaction cross sections [S. Bagchi et al., PRL (accepted)]
- Enhancement of low-energy electric dipole (E1) response





- Large interaction cross sections [S. Bagchi et al., PRL (accepted)]
- Enhancement of low-energy electric dipole (E1) response



➤ Resonant state at ~ 0.85 MeV: 73% of (2p<sub>3/2</sub>)(1d<sub>3/2</sub>) components
E1 mostly (2p<sub>3/2</sub>)<sup>2</sup> → (2p<sub>3/2</sub>)(1d<sub>3/2</sub>) and (1d<sub>3/2</sub>)<sup>2</sup> → (2p<sub>3/2</sub>)(1d<sub>3/2</sub>)

- Large interaction cross sections [S. Bagchi et al., PRL (accepted)]
- Enhancement of low-energy electric dipole (E1) response



➤ Resonant state at ~ 0.85 MeV: 73% of (2p<sub>3/2</sub>)(1d<sub>3/2</sub>) components
E1 mostly (2p<sub>3/2</sub>)<sup>2</sup> → (2p<sub>3/2</sub>)(1d<sub>3/2</sub>) and (1d<sub>3/2</sub>)<sup>2</sup> → (2p<sub>3/2</sub>)(1d<sub>3/2</sub>)

# ➤ Relativistic Coulomb Excitation (RCE) [A&W]

e.g. 235 MeV/nucleon  $^{29}{\sf F}$  beam on lead  $\Rightarrow$  600 mb (90% below 6 MeV)

#### What about low-energy breakup?



Around the Coulomb barrier, continuum couplings are essential in describing reactions involving weakly-bound nuclei

➤ need coupled channels (CC)

• Continuum-discretized coupled channels (CDCC) originally for deuteron breakup (Yahiro, Austern)
#### What about low-energy breakup?



Around the Coulomb barrier, continuum couplings are essential in describing reactions involving weakly-bound nuclei

➤ need coupled channels (CC)

- Continuum-discretized coupled channels (CDCC) originally for deuteron breakup (Yahiro, Austern)
- Extended to three-body projectiles (e.g. <sup>11</sup>Li +<sup>208</sup> Pb M. Rodríguez-Gallardo et al)

[PRL109(2012)262701]





$$\begin{aligned} \Psi_{c}^{JM}\left(\boldsymbol{\xi},\boldsymbol{R}\right) &= \sum_{c'} \frac{i^{L}}{R} \boldsymbol{\chi}_{c,c'}^{J}(\boldsymbol{R}) \Phi_{c'}^{JM}(\widehat{\boldsymbol{R}},\boldsymbol{\xi}) \\ \Phi_{c}^{JM}(\widehat{\boldsymbol{R}},\boldsymbol{\xi}) &= \left[Y_{L}(\widehat{\boldsymbol{R}}) \otimes \phi_{nj}(\boldsymbol{\xi})\right]_{JM} \end{aligned}$$



$$\begin{aligned} \Psi_{c}^{JM}\left(\boldsymbol{\xi},\boldsymbol{R}\right) &= \sum_{c'} \frac{i^{L}}{R} \boldsymbol{\chi}_{c,c'}^{J}(\boldsymbol{R}) \Phi_{c'}^{JM}(\widehat{\boldsymbol{R}},\boldsymbol{\xi}) \\ \Phi_{c}^{JM}(\widehat{\boldsymbol{R}},\boldsymbol{\xi}) &= \left[Y_{L}(\widehat{\boldsymbol{R}}) \otimes \phi_{nj}(\boldsymbol{\xi})\right]_{JM} \end{aligned}$$

$$c \equiv \{L(nj)\}, \ \boldsymbol{J} = \boldsymbol{L} + \boldsymbol{j}$$

$$\left[-\frac{\hbar}{2m_r}\left(\frac{d^2}{dR^2} - \frac{L(L+1)}{R^2}\right) + E_{nj} - E\right]\chi^J_{c,c}(R) + \sum_{c'} i^{L'-L} V^{JM}_{c,c'}(R)\chi^J_{c,c'}(R) = 0$$



$$\Psi_{c}^{JM}\left(\boldsymbol{\xi},\boldsymbol{R}\right) = \sum_{c'} \frac{i^{L}}{R} \boldsymbol{\chi}_{c,c'}^{J}(\boldsymbol{R}) \Phi_{c'}^{JM}(\widehat{\boldsymbol{R}},\boldsymbol{\xi})$$
$$\Phi_{c}^{JM}(\widehat{\boldsymbol{R}},\boldsymbol{\xi}) = \left[Y_{L}(\widehat{\boldsymbol{R}}) \otimes \phi_{nj}(\boldsymbol{\xi})\right]_{JM}$$

 $c \equiv \{L(nj)\}, \ \boldsymbol{J} = \boldsymbol{L} + \boldsymbol{j}$ 

$$\left[-\frac{\hbar}{2m_r}\left(\frac{d^2}{dR^2} - \frac{L(L+1)}{R^2}\right) + E_{nj} - E\right]\chi^J_{c,c}(R) + \sum_{c'} i^{L'-L} V^{JM}_{c,c'}(R)\chi^J_{c,c'}(R) = 0$$

Requires  $V_{c,c'}^{JM}(R) = \langle \Phi_c^{JM} | \widehat{U}_{pt} | \Phi_{c'}^{JM} \rangle$  coupling potentials; typically expanded in Q multipoles



$$\widehat{U}_{pt} = U_1 + U_2 + U_3$$

 $U_i \equiv$  optical potential between the particle i and the target

 $\phi_{nj\mu}(\boldsymbol{x}, \boldsymbol{y})$  three-body states (HH)



$$\widehat{U}_{pt} = U_1 + U_2 + U_3$$

 $U_i \equiv$  optical potential between the particle i and the target

 $\phi_{nj\mu}(\boldsymbol{x},\boldsymbol{y})$  three-body states (HH)

## 1) binning method

$$h\phi_{j\mu}(\varepsilon) = \varepsilon\phi_{j\mu}(\varepsilon)$$





$$\widehat{U}_{pt} = U_1 + U_2 + U_3$$

 $U_i \equiv$  optical potential between the particle i and the target

 $\phi_{nj\mu}(\boldsymbol{x},\boldsymbol{y})$  three-body states (HH)

#### 1) binning method

$$h\phi_{j\mu}(\varepsilon) = \varepsilon\phi_{j\mu}(\varepsilon)$$





$$\hat{U}_{pt} = U_1 + U_2 + U_3$$

 $U_i \equiv \text{optical potential between the particle } i$  and the target

 $\phi_{nj\mu}(\pmb{x},\pmb{y})$  three-body states (HH)

## 1) binning method

$$h\phi_{j\mu}(\varepsilon) = \varepsilon\phi_{j\mu}(\varepsilon)$$



## 2) pseudostates (THO)

(useful for 3b systems with more than 1 charged particle)

Diagonalization:

 $h\phi_{nj\mu}(\varepsilon) = \varepsilon_n \phi_{nj\mu}(\varepsilon)$ 

[PRC92(2015)054611]



















- r<sub>mat</sub> = 2.466 fm (exp, 2.4-2.5 fm)
- $r_{ch} = 2.508 \text{ fm}$ (exp, 2.512  $\pm$  0.012 fm)
- Q<sub>2</sub> = 4.91 e fm<sup>2</sup> (exp, 5.29± 0.04 e fm<sup>2</sup>)



 ${}^{9}\text{Be}$ (lpha + lpha + n) weakly-bound  $arepsilon_B = 1.574 \text{ MeV}$ 





- r<sub>mat</sub> = 2.466 fm (exp, 2.4-2.5 fm)
- $r_{ch} = 2.508 \text{ fm}$ (exp, 2.512  $\pm$  0.012 fm)
- Q<sub>2</sub> = 4.91 e fm<sup>2</sup> (exp, 5.29± 0.04 e fm<sup>2</sup>)

CC: ground state, resonances and non-resonant continuum

 ${}^{9}\text{Be} + {}^{208}\text{Pb}$  @ 44 MeV (around the Coulomb barrier)



➤ Important dipole effects (Q = 1).

 Underestimation of the nuclear rainbow. (effect also observed by Descouvemont [PRC 2015])
 Hopefully breakup angular distributions will help!  ${}^{9}\text{Be} + {}^{208}\text{Pb}$  @ 38 MeV (below the barrier)



> Important continuum couplings even below the barrier.

➤ Agreement with data for total BU cross section.





 ${}^{9}\text{Be} + p @ 51 \text{ MeV}$ (5.67 MeV/nucleon)

Data Keeley, Pakou et al. (2019)

Use n-p gaussian potential and  $\alpha$ -p OP by fitting elastic data

➤ The implicit inclusion of BU channels improves the agreement.

**X** Sensitivity to the potentials used; difficult to describe the minimum.

#### Other cases of interest and outlook

## $> {}^{29}\mathsf{F}({}^{27}\mathsf{F} + n + n)$

Explore 2n halo dynamics around the barrier (compare <sup>6</sup>He or <sup>11</sup>Li)

> <sup>17</sup>Ne(<sup>15</sup>O + p + p)

Is it a 2p halo?  $\Rightarrow$  near-barrier dynamics could tell!

➤ <sup>10</sup>C is a Brunnian system

 $(\alpha + \alpha + p + p$  without any bound two- or three-body subsystem)

Consider  ${}^8\text{Be} + p + p$ , with  ${}^8\text{Be}$  in 0<sup>+</sup> g.s. (and possibly 2<sup>+</sup> ex)



structure:

Need <sup>8</sup>Be + p potential Core excitation (2<sup>+</sup>) ??

reaction:

Need  $^{8}\text{Be} + \text{target OP}$ 

(not well determined)

Data Linares et al. [to be submitted] measured at Cyclotron Texas A&M





$$^{16}$$
Be ( $^{14}$ Be +  $n$  +  $n$ )

"Known" 2*n* emitter Spyrou [PRL 108 (2012) 102501]

Proton removal from <sup>17</sup>B on Be target @ 53 MeV/u (MSU)



new RIKEN data - B. Monteagudo, F. M. Marqués (LPC Caen)

# Three-body calculations

A. Lovell, F. M. Nunes and I. J. Thompson [PRC 95 (2017) 034605]

Hyperspherical *R*-matrix method  $\Rightarrow$  "true" continuum

n-n GPT potential;  $n\text{-}^{14}\mathsf{Be}$  potential fitted to g.s. of  $^{15}\mathsf{Be}$   $(d_{5/2})$  at 1.8 MeV



3b force to give 0<sup>+</sup> res. at  $|S_{2n}| = 1.35 \Rightarrow$  width  $\Gamma = 0.17$  MeV

Dominant 2n configuration 80%  $l_x = 0$  components

## Stabilization approach by Hazi & Taylor PRA 1 (1970) 1109

J. Casal





 $\Rightarrow$  It favors correlated emission

Can we describe the decay? (width, *nn* rel. energy, ...)

Stabilization in a discrete basis:

Look for stable pseudostates (PS) under changes in the basis parameters

 $\Rightarrow$  PS around 1.3 MeV captures resonant behavior





## Identifying and characterizing few-body resonances: a novel approach



Ex: <sup>6</sup>He  $(\alpha + n + n)$ non-res. 1<sup>-</sup> 2<sup>+</sup> resonance

$$\widehat{H}|n\rangle = \varepsilon_n|n\rangle$$

mix res. and non-res.

## [J.C., J. Gómez-Camacho, PRC 99 (2019) 014604]

## Identifying and characterizing few-body resonances: a novel approach



 $\Rightarrow$  Diagonalize a **resonance operator** in a PS basis  $\{|n\rangle\}$ 

$$\widehat{M} = \widehat{H}^{-1/2} \widehat{V} \widehat{H}^{-1/2}, \qquad \widehat{M} |\psi\rangle = m |\psi\rangle; \qquad |\psi\rangle = \sum_{n} \mathcal{C}_{n} |n\rangle$$

- It separates resonant states, which are strongly localized, from nonresonant continuum states, which are spatially spread.
- $\bullet\,$  The expansion in terms of  $|n\rangle$  allows to build energy distributions.

[J.C., J. Gómez-Camacho, PRC 99 (2019) 014604]

#### Identifying and characterizing few-body resonances: a novel approach



 $\Rightarrow$  Diagonalize a **resonance operator** in a PS basis  $\{|n\rangle\}$ 

$$\widehat{M} = \widehat{H}^{-1/2} \widehat{V} \widehat{H}^{-1/2}, \qquad \widehat{M} |\psi\rangle = m |\psi\rangle; \qquad |\psi\rangle = \sum_{n} \mathcal{C}_{n} |n\rangle$$

- It separates resonant states, which are strongly localized, from nonresonant continuum states, which are spatially spread.
- The expansion in terms of |n
  angle allows to build energy distributions.

[J.C., J. Gómez-Camacho, PRC 99 (2019) 014604]

Decay  $\Rightarrow$  time evolution:

Amplitudes:

$$|\psi(t)\rangle = \sum_{n} C_{n} e^{-i\varepsilon_{n}t} |n\rangle \qquad \qquad a(t) = \langle \psi(0)|\psi(t)\rangle = \sum_{n} |C_{n}|^{2} e^{-i\varepsilon_{n}t}$$

Amplitudes:

$$|\psi(t)\rangle = \sum_{n} \mathcal{C}_{n} e^{-i\varepsilon_{n}t} |n\rangle \qquad \qquad a(t) = \langle \psi(0)|\psi(t)\rangle = \sum_{n} |\mathcal{C}_{n}|^{2} e^{-i\varepsilon_{n}t}$$

For "ideal" BW:

Decay  $\Rightarrow$  time evolution:

Resonance quality parameter:

$$a_r(t) = e^{-i\varepsilon_r t - \frac{\Gamma}{2}t} \qquad \qquad \delta^2\left(\varepsilon_r, \Gamma\right) = \frac{\int_0^\infty e^{-xt} |a(t) - a_r(t)|^2 dt}{\int_0^\infty e^{-xt} |a(t)|^2 dt}$$

(1/x: relevant timescale for the resonance formation)

Amplitudes:

$$|\psi(t)\rangle = \sum_{n} \mathcal{C}_{n} e^{-i\varepsilon_{n}t} |n\rangle \qquad \qquad a(t) = \langle \psi(0)|\psi(t)\rangle = \sum_{n} |\mathcal{C}_{n}|^{2} e^{-i\varepsilon_{n}t}$$

For "ideal" BW:

Decay  $\Rightarrow$  time evolution:

Resonance quality parameter:

$$a_r(t) = e^{-i\varepsilon_r t - \frac{\Gamma}{2}t} \qquad \qquad \delta^2\left(\varepsilon_r, \Gamma\right) = \frac{\int_0^\infty e^{-xt} |a(t) - a_r(t)|^2 dt}{\int_0^\infty e^{-xt} |a(t)|^2 dt}$$

(1/x): relevant timescale for the resonance formation)

In order to find the resonance parameters  $\varepsilon_r$  and  $\Gamma$  which best describe the time evolution a(t), we perform a minimization

$$\frac{\partial}{\partial \varepsilon_r} \delta^2 \left( \varepsilon_r, \Gamma \right) = 0, \quad \frac{\partial}{\partial \Gamma} \delta^2 \left( \varepsilon_r, \Gamma \right) = 0$$

 $\Rightarrow$  as a function of x, i.e.,  $\varepsilon_r(x), \Gamma(x)$   $x \to 0$  limit means long times



Resonance parameters  $\varepsilon_R(0^+) = 1.35 \text{ MeV}$  $\Gamma(0^+) = 0.16 \text{ MeV}$ 

width in good agreement with "true" 3b continuum (Lovell et al.)



Resonance parameters  $\varepsilon_R(0^+) = 1.35 \text{ MeV}$   $\Gamma(0^+) = 0.16 \text{ MeV}$ width in good agreement with

width in good agreement with "true" 3b continuum (Lovell et al.)



Resonance parameters  $\varepsilon_R(0^+) = 1.35 \text{ MeV}$  $\Gamma(0^+) = 0.16 \text{ MeV}$ 

width in good agreement with "true" 3b continuum (Lovell et al.)



New RIKEN data resolve two peaks! (Monteagudo, Marqués) 1st excited state observed for the first time; likely 2<sup>+</sup>





New RIKEN data resolve two peaks! (Monteagudo, Marqués) 1st excited state observed for the first time; likely 2<sup>+</sup>



#### Is there a signature of these dineutron correlations in the decay?

Resonance WF obtained as eigenstate of  $\widehat{M}$ , evolved in time:

$$\phi_{\beta}(\rho,t) \longrightarrow \left(\mathcal{A}_{\beta}^{+}H_{K}^{+}(k_{c}\rho) + \mathcal{A}_{\beta}^{-}H_{K}^{-}(k_{c}\rho)\right)\exp(-\Gamma t/2 - iE_{r}t)$$

> Asymptotically, only outgoing waves  $\mathcal{A}^+_{\beta}H^+_K(k_c\rho)$  survive This asymptotic behavior allows to build  $E_{nn}$  relative energy distributions (in progress)

#### Is there a signature of these dineutron correlations in the decay?

Resonance WF obtained as eigenstate of  $\widehat{M}$ , evolved in time:

$$\phi_{\beta}(\rho,t) \longrightarrow \left(\mathcal{A}_{\beta}^{+}H_{K}^{+}(k_{c}\rho) + \mathcal{A}_{\beta}^{-}H_{K}^{-}(k_{c}\rho)\right)\exp(-\Gamma t/2 - iE_{r}t)$$

> Asymptotically, only outgoing waves  $\mathcal{A}^+_{\beta}H^+_K(k_c\rho)$  survive This asymptotic behavior allows to build  $E_{nn}$  relative energy distributions (in progress)



more pronounced low- $E_{nn}$  peak for the 2<sup>+</sup>!

#### Summary

- The structure and dynamics of three-body nuclei (e.g. Borromean, halos, 2N-emitters) provide insight into the limits of nuclear stability: coupling to the continuum, parity inversion, exotic decays ...
- The hyperspherical harmonics (HH) formalism allows us to describe their properties. We use a pseudostate (PS) method [THO basis].
- (1) <u>Structure</u>: possible 2n halo in  ${}^{29}\mathsf{F}({}^{27}\mathsf{F}+n+n)$

Data suggests <sup>28</sup>F g.s. is  $\ell = 1$ ; inversion favors dineutron (mixing) and increases the radius of <sup>29</sup>F. We predict a large E1 strength.

(2) <u>Reactions</u>: four-body CDCC. <sup>9</sup>Be  $(\alpha + \alpha + n)$ 

Coupling to the continuum is important even below the Coulomb barrier. Dipole effects are relevant.

(3) Decays: two-neutron emitter <sup>16</sup>Be  $(^{14}Be + n + n)$ 

Large dineutron component (favors simultaneous decay). The width obtained from the time evolution of the eigenstates of our resonant operator is consistent with "true" 3b continuum.

 $E_{nn}$  relative-energy dist. in progress (0<sup>+</sup>, and 2<sup>+</sup> for the first time)

#### Summary

- The structure and dynamics of three-body nuclei (e.g. Borromean, halos, 2N-emitters) provide insight into the limits of nuclear stability: coupling to the continuum, parity inversion, exotic decays ...
- The hyperspherical harmonics (HH) formalism allows us to describe their properties. We use a pseudostate (PS) method [THO basis].
- (1) <u>Structure</u>: possible 2n halo in  ${}^{29}\mathsf{F}({}^{27}\mathsf{F}+n+n)$ 
  - Data suggests <sup>28</sup>F g.s. is  $\ell = 1$ ; inversion favors dineutron (mixing) and increases the radius of <sup>29</sup>F. We predict a large E1 strength.
- (2) <u>Reactions</u>: four-body CDCC. <sup>9</sup>Be  $(\alpha + \alpha + n)$

Coupling to the continuum is important even below the Coulomb barrier. Dipole effects are relevant.

(3) Decays: two-neutron emitter <sup>16</sup>Be  $(^{14}Be + n + n)$ 

Large dineutron component (favors simultaneous decay). The width obtained from the time evolution of the eigenstates of our resonant operator is consistent with "true" 3b continuum.

 $E_{nn}$  relative-energy dist. in progress (0<sup>+</sup>, and 2<sup>+</sup> for the first time)
## Summary

- The structure and dynamics of three-body nuclei (e.g. Borromean, halos, 2N-emitters) provide insight into the limits of nuclear stability: coupling to the continuum, parity inversion, exotic decays ...
- The hyperspherical harmonics (HH) formalism allows us to describe their properties. We use a pseudostate (PS) method [THO basis].
- (1) <u>Structure</u>: possible 2n halo in  ${}^{29}\mathsf{F}({}^{27}\mathsf{F}+n+n)$

Data suggests  $^{28}{\rm F}$  g.s. is  $\ell=1;$  inversion favors dineutron (mixing) and increases the radius of  $^{29}{\rm F}.$  We predict a large E1 strength.

(2) <u>Reactions</u>: four-body CDCC. <sup>9</sup>Be  $(\alpha + \alpha + n)$ 

Coupling to the continuum is important even below the Coulomb barrier. Dipole effects are relevant.

(3) Decays: two-neutron emitter <sup>16</sup>Be  $(^{14}Be + n + n)$ 

Large dineutron component (favors simultaneous decay). The width obtained from the time evolution of the eigenstates of our resonant operator is consistent with "true" 3b continuum.

 $E_{nn}$  relative-energy dist. in progress (0<sup>+</sup>, and 2<sup>+</sup> for the first time)

## Summary

- The structure and dynamics of three-body nuclei (e.g. Borromean, halos, 2N-emitters) provide insight into the limits of nuclear stability: coupling to the continuum, parity inversion, exotic decays ...
- The hyperspherical harmonics (HH) formalism allows us to describe their properties. We use a pseudostate (PS) method [THO basis].
- (1) <u>Structure</u>: possible 2n halo in  ${}^{29}\mathsf{F}({}^{27}\mathsf{F}+n+n)$

Data suggests  $^{28}{\rm F}$  g.s. is  $\ell=1;$  inversion favors dineutron (mixing) and increases the radius of  $^{29}{\rm F}.$  We predict a large E1 strength.

(2) <u>Reactions</u>: four-body CDCC. <sup>9</sup>Be  $(\alpha + \alpha + n)$ 

Coupling to the continuum is important even below the Coulomb barrier. Dipole effects are relevant.

(3) Decays: two-neutron emitter <sup>16</sup>Be  $(^{14}Be + n + n)$ 

Large dineutron component (favors simultaneous decay). The width obtained from the time evolution of the eigenstates of our resonant operator is consistent with "true" 3b continuum.

 $E_{nn}$  relative-energy dist. in progress (0<sup>+</sup>, and 2<sup>+</sup> for the first time).

## Collaborators (theory):

J. M. Arias<sup>1</sup>, L. Fortunato<sup>2</sup>, J. Gómez-Camacho<sup>1,3</sup>, M. Gómez-Ramos<sup>4</sup>, W. Horiuchi<sup>5</sup>, A. M. Moro<sup>1</sup>, M. Rodríguez-Gallardo<sup>1</sup>, Jagjit Singh<sup>6</sup>, A. Vitturi<sup>2</sup>

Exp. colleagues: A. Arazi<sup>7</sup>, A. Corsi<sup>8</sup>, R. Linares<sup>9</sup>, F. M. Marqués<sup>10</sup>, B. Monteagudo<sup>11</sup>

<sup>1</sup>: Universidad de Sevilla, <sup>2</sup>: Università degli Studi di Padova and INFN, <sup>3</sup>: Centro Nacional de Aceleradores (CNA), <sup>4</sup>: TU Darmstadt, <sup>5</sup>: Hokkaido University, <sup>6</sup>: RCNP Osaka University, <sup>7</sup>: TANDAR, <sup>8</sup>: CEA Saclay, <sup>9</sup>: Universidade Federal Fluminense, <sup>10</sup>: LPC Caen <sup>11</sup>: MSU



"Una manera de hacer Europa"

FIS2017-88410-P





Horizon 2020 Grant agreement 654002 Project No. CASA\_SID19\_1