## Low-energy <sup>11</sup>Li + p and <sup>11</sup>Li + d scattering in a multicluster model

P. Descouvemont

Université Libre de Bruxelles, Belgium

- 1. Introduction
- 2. Structure of <sup>11</sup>Li (E1 distribution)
- 3. Overview of CDCC (Continuum Discretized Coupled Channels)
  - → Systems "3+1", "3+2"
- 4. The R-matrix method
- 5. Results on <sup>11</sup>Li+p
- 6. Results on <sup>11</sup>Li+d
- 7. Conclusion

Ref.: P. D., Phys. Rev. C, accepted

#### 1. Introduction

Two recent experimental papers on <sup>11</sup>Li+p and <sup>11</sup>Li+d (elastic and inelastic scattering)

- <sup>11</sup>Li+p: J. Tanaka et al., Phys. Lett. B 774 (2017) 268  $E_{lab}$ =66 MeV,  $E_{cm}$ =5.5 MeV  $\rightarrow$  dipole resonance in <sup>11</sup>Li at  $E_x$ =0.80 MeV ( $\Gamma$ =1.1 MeV)
- <sup>11</sup>Li+d: R. Kanungo et al., PRL 114, 192502 (2015)
   E<sub>lab</sub>=55.3 MeV, E<sub>cm</sub>=8.51 MeV
   → dipole resonance in <sup>11</sup>Li at E<sub>x</sub>=1.03 MeV (Γ=0.5 MeV), isoscalar character

E1 operator Long wavelength approximation:  $M_{\mu}^{E1} = \sum_{i} \left(\frac{1}{2} - t_{iz}\right) (\mathbf{r}_{i} - \mathbf{R}_{cm})_{\mu}$ Isoscalar=0 Isovector

Beyond the long wavelength approximation:

$$M_{\mu}^{E1} = \sum_{i} \left( \frac{1}{2} - t_{iz} \right) \mathbf{r}'_{i\mu} \left( 1 - \frac{1}{10} \left( k_{\gamma} r'_{i} \right)^{2} + \cdots \right) + \cdots$$

→ isoscalar transitions are possible

### 1. Introduction

#### Present work

• <sup>11</sup>Li=<sup>9</sup>Li+n+n (hyperspherical coordinates): E. C. Pinilla, P. Descouvemont, and D. Baye, Phys. Rev. C 85, 054610 (2012).



→ E1 distribution

• <sup>11</sup>Li+p, <sup>11</sup>Li+d with the CDCC method





<sup>11</sup>Li+p: 4-body CDCC (3+1) (see also T. Matsumoto et al., PTEP 2019, 126)

<sup>11</sup>Li+d: 5-body CDCC (3+2)

## 2. Structure of <sup>11</sup>Li

## 2. Structure of <sup>11</sup>Li



- Details in E. C. Pinilla et al., Phys. Rev. C 85, 054610 (2012).
- V<sub>nn</sub>=Minnesota potential
- V<sub>9Li+n</sub>=Woods-Saxon fitted on the scattering length
- Spin of the <sup>9</sup>Li core is neglected
- Forbidden states for  $s_{1/2}$  and  $p_{3/2} \rightarrow$  removed by a supersymmetric transformation

#### J=0+

- Bound state at E<sub>B</sub>=-0.378 MeV
- $\sqrt{\langle r^2 \rangle}=3.12 \text{ fm, exp}=3.16\pm0.11 \text{ fm}$

#### J=1<sup>-</sup>: <sup>9</sup>Li+n+n phase shifts (3-body phase shifts)





→ Dipole resonance near  $E_{cm}$ =0.6 MeV,  $E_x$ =1.0 MeV

## 2. Structure of <sup>11</sup>Li

E1 transitions

$$B(E1, J_i \to J_f) = \frac{2J_f + 1}{2J_i + 1} | < \Psi^{J_f} || M^{E1} || \Psi^{J_i} > |^2$$

2 options for  $M_{\mu}^{E1}$ : LWA  $\rightarrow$  isoscalar=0 beyond the LWA  $\rightarrow$  isoscalar  $\neq 0$ 



- ➔ Peak near E<sub>cm</sub>=0.6 MeV Consistent with the phase shifts
- → Weak influence of high-order terms in  $M_{\mu}^{E1}$ Term  $\sim \frac{1}{10} (k_{\gamma}r)^2$  with  $k_{\gamma} = (E_{cm} + 0.4)/\hbar c$ Even if r<sup>2</sup> is large the correction is quite small
- ➔ No isoscalar character for the transition

# Overview of CDCC : <u>Continuum Discretized Coupled Channel method</u>

- Introduced in the 70's to deal with deuteron scattering
   Low binding energy of the deuteron → breakup is important
  - G. Rawitscher, Phys. Rev. C 9, 2210 (1974)
  - N. Austern et al., Phys. Rep. 154 (1987) 126
- Two-body projectile, three-body problem

 $H = H_0(\boldsymbol{r}) - \frac{\hbar^2}{2\mu} \Delta_{\boldsymbol{R}} + V_{t1}(\boldsymbol{R}, \boldsymbol{r}) + V_{t2}(\boldsymbol{R}, \boldsymbol{r})$ 



- $H_0(\mathbf{r})$  = Hamiltonian associated with the projectile
- $V_{t1}$ ,  $V_{t2}$ = optical potentials between the target and the fragments (high energies: above the resonance region)

Projectile breakup described by approximate (discrete) states:  $H_0 \Phi_n^{lm}(\mathbf{r}) = E_n^l \Phi_n^{lm}(\mathbf{r})$ ٠



- CDCC well adapted to exotic nuclei (low binding energy) ٠ Example: <sup>11</sup>Be=<sup>10</sup>Be+n (0.5 MeV)
- Low BU energy is not necessary! But BU effects are expected to be more important ٠

Extensions: same principle : discretzation of the continuum

• 3-body projectiles: <sup>6</sup>He, <sup>11</sup>Li, <sup>9</sup>Be



- T. Matsumoto et al., PRC70 (2004) 061601
- M. Rodriguez-Gallardo et al., PRC77 (2008) 064609

• A-body projectiles: <sup>7</sup>Li, <sup>6</sup>He, <sup>8</sup>Li



Based on nucleon-target potentials  $\rightarrow$  no parameter

- Y. Sakuragi et al., PTP Supp. 89 (1986) 136
- P.D., M. Hussein, PRL 111 (2013) 082701

• 2-body projectile + 2-body target: <sup>11</sup>Be+d, <sup>7</sup>Li+d



Pseudostates in the projectile and in the target  $\rightarrow$  many channels

- P. D., Phys. Lett. B 772 (2017) 1
- P. D., Phys. Rev. C 97 (2018) 064607

• CDCC equations for <sup>11</sup>Li+p and <sup>11</sup>Li+d



Total hamiltonian:  $H = H_1(\mathbf{x}, \mathbf{y}) + H_2(\mathbf{r}) + T_R + \sum_{ij} U_{ij}(\mathbf{R}, \mathbf{x}, \mathbf{y}, \mathbf{r})$ 

With  $H_i$ =internal hamiltonian of nucleus i  $T_R$  =relative kinetic energy  $U_{ij}(s)$  =optical potential between fragments i and j

Then: standard CDCC procedure

Standard CDCC procedure:

1. Step 1: solve  $H_1 \Phi_{1k}^{jm} = E_{1k}^j \Phi_{1k}^{jm}$  for <sup>11</sup>Li (hyperspherical coordinates)  $H_2 \Phi_{2k}^{jm} = E_{2k}^j \Phi_{2k}^{jm}$  for d

With  $\Phi_{1k}^{jm}$  expanded on a basis (Lagrange functions: matrix elements are simple)

→ negative energies = physical states

positive energies = pseudostates=(discrete) approximations of the continuum in 1 and 2

#### 2. Step 2:

Define channel functions: 
$$\varphi_c(x, y, r, \Omega_R) = \left[ \left[ \Phi_{1k_1}^{j_1}(x, y) \otimes \Phi_{2k_2}^{j_2}(r) \right]^I \otimes Y_L(\Omega_R) \right]^{JM}$$
  
with  
 $I = \text{channel spin}$ 

L =angular momentum between d and <sup>11</sup>Li

index  $c = (j_1, k_1, j_2, k_2, I, L)$ 

and expand the total wave function as  $\Psi^{JM\pi} = \sum_{c} u_{c}^{J\pi}(R) \varphi_{c}(x, y, r, \Omega_{R})$ 

 $u_c^{J\pi}(R)$  to be determined

#### 3. Step 3

Compute matrix elements of the potential  $\sum_{ij} U_{ij}(\mathbf{R}, \mathbf{x}, \mathbf{y}, \mathbf{r})$ 

$$V_{cc'}^{J}(R) = \langle \varphi_c \mid \sum_{ij} U_{ij}(\boldsymbol{R}, \boldsymbol{x}, \boldsymbol{y}, \boldsymbol{r}) \mid \varphi_{c'} \rangle$$

= integrals over 11 coordinates (8 angles + 3 radii): 5 analytical + 6 numerical integrals (use of the Raynal-Revai coefficients)

4. Step 4: Solve the coupled-channel system

$$\left[-\frac{\hbar^2}{2\mu}\left(\frac{d^2}{dR^2} - \frac{L(L+1)}{R^2}\right) + E_c - E\right]u_c^{J\pi}(R) + \sum_{c'}V_{cc'}^{J\pi}(R)u_{c'}^{J\pi}(R) = 0$$

- Standard coupled-channel system (general form common to most scattering theories)
- At large distances (only Coulomb) :  $u_c^{J\pi}(R) \rightarrow I_c(R)\delta_{c\omega} O_c(R)U_{c\omega}^{J\pi}$  ( $\omega$  =entrance channel)  $U_{c\omega}^{J\pi}$  = scattering matrix: provides the cross sections (elastic, inelastic, breakup, etc.)
- Solved with the R-matrix method (space divided in an internal and an external regions)
- The system must be solved for each  $J\pi$
- Problems:
  - Many channels c (up to 9000 for <sup>11</sup>Li+d)
  - $\circ$  Many  $J\pi$  values (depends on energy)
  - Long range of the potentials  $V_{cc'}^{J\pi}(R)$  (due to Coulomb)
  - → Long calculations + many tests

#### 5. Step 5

Determing the cross sections from the scattering matrices

## The R-matrix method

### 4. The R-matrix method

#### Scattering matrix determined from the R-matrix theory

R-matrix theory: based on 2 regions (channel radius a)
Lane and Thomas, Rev. Mod. Phys. 30 (1958) 257
P.D. and D. Baye, Rep. Prog. Phys. 73 (2010) 036301
P.D., Computer Physics Communications 200 (2016) 199



- Main ingredient: matrix elements of the coupling potentials  $V_{cc'}^{J\pi}(R): \langle \phi_i | V_{cc'}^{J\pi} | \phi_j \rangle \rightarrow$  fast method needed
- Matching at R=a provides: scattering matrices  $U^{J\pi} \rightarrow$  cross sections

### 4. The R-matrix method

Choice of the basis: the Lagrange-mesh method (D. Baye, Phys. Rep. 565 (2015) 1-107)

- Gauss approximation:  $\int_0^a g(x) dx \approx \sum_{k=1}^N \lambda_k g(x_k)$ 
  - $\circ$  N= order of the Gauss approximation
  - $x_k$ =roots of an orthogonal polynomial  $P_N(x)$ ,  $\lambda_k$ =weights

o If interval [0,*a*]: Legendre polynomials  $[0,\infty]$ : Laguerre polynomials

• Lagrange functions for [0,1]: 
$$f_i(x) \sim \frac{P_N(2x-1)}{(x-x_i)}$$

•  $x_i$  are roots of  $P_N(2x-1) = 0$ 

• with the Lagrange property:  $f_i(x_j) = \lambda_i^{-1/2} \delta_{ij}$ 

• Matrix elements with Lagrange functions: Gauss approximation is used  $\langle f_i | f_j \rangle = \int f_i(x) f_j(x) dx \approx \delta_{ij}$ 

 $< f_i |T| f_j >$ analytical

 $\langle f_i | V | f_j \rangle = \int f_i(x) V(x) f_j(x) dx \approx V(x_i) \delta_{ij} \Rightarrow$  no integral needed

Also applicable to non-local potentials

- 5. Results on <sup>11</sup>Li+p
- a. Conditions of the calculations



#### Interactions

- n+p: Minnesota
- <sup>9</sup>Li+p: Koning-Delaroche, Chapel Hill

Channel radius a~25 fm (stability tests)

<sup>11</sup>Li pseudostates E<sub>max</sub>=10 MeV, j<sub>max</sub>=3



b. Convergence of the elastic cross section,  $E_{lab}$ =66 MeV,  $E_{cm}$ =5.5 MeV



c. Comparison with experiment

OM: optical model with global parametrizations (KD03, CH89)



21

#### d. Equivalent potentials

Question: can we find a single-channel equivalent potential?

#### • J-dependent potential

For the elastic channel :  $(T_R + V_{11}^J(R) - E)u_1^J(R) = -\sum_{c \neq 1} V_{1c}^J(R)u_c^J(R)$ 

Equivalent to  $(T_R + V_{11}^J(R) + V_{pol}^J(R) - E) u_1^J(R) = 0$ 

with  $V_{pol}^{J}(R) = -\frac{\sum_{c \neq 1} V_{1c}^{J}(R) u_{c}^{J}(R)}{u_{1}^{J}(R)}$ 

Problems: J dependent contains singularities (nodes of the wave function)

 $\rightarrow$  Construction of a J-independent potential

#### b) J-independent potential

I.J. Thompson et al., Nucl. Phys. A 505 (1989) 84.

$$V_{pol}(R) = \frac{\sum_{J} V_{pol}^{J}(R) \omega^{J}(R)}{\sum_{J} \omega^{J}(R)}$$

With  $\omega^{J}(R)$ =weight function

$$\omega^{J}(R) = (2J+1) \left(1 - \left|U_{11}^{J}\right|^{2}\right) \left|u_{1}^{J}(R)\right|^{2}$$

reduces the influence of the nodes gives more weight to the dominant J-values Test: verify that  $V_{pol}(R)$  redroduces the full calculation



24

<sup>11</sup>Li+n potential (used for <sup>11</sup>Li+d)



 $\theta$  (deg)

- Main goal: simultaneous study of <sup>11</sup>Li+p and <sup>11</sup>Li+d (same conditions)
- Much more difficult: many channels, coupling potentials require long computer times, etc
   → no full convergence

First calculation: « standard » CDCC calculation with <sup>11</sup>Li+p/n equivalent potentials (deuteron BU only)



#### Second calculation: 5-body CDCC calculation

Convergence with respect to <sup>11</sup>Li BU (d in ground state)



# Convergence with respect to deuteron BU (<sup>11</sup>Li in ground state)



Second calculation: 5-body CDCC calculation

Summary



#### Second calculation: 5-body CDCC calculation



Equivalent potential



- OM: optical potential fitted by Kanungo et al.
- Data are close to Rutherford scattering

A short range is necessary (surprising...)

# Conclusions

## 7. Conclusion

#### <sup>11</sup>Li structure

- Presence of a 1<sup>-</sup> resonance at low energies
- No isoscalar character (as suggested by Kanungo et al.)

#### <sup>11</sup>Li+p: 4-body CDCC

- Break up effects important for  $\theta > 90^{\circ}$  (also closed channels)
- Fair description of the elastic scattering cross section

#### <sup>11</sup>Li+d: 5-bocy CDCC

- Extension of CDCC to "3+2" systems: important computer times (coupling potentials, large CC systems)
- "Full" convergence cannot be achieved
- Data surprisingly close to Rutherford  $\rightarrow$  to be confirmed

#### Limitations of CDCC: <sup>9</sup>Li+p/n at E~5 MeV

- presence of resonances?
- treatment of Pauli forbidden states?

#### Data needed

- ${}^{9}$ Li+p elastic scattering  $\rightarrow$  optical potential
- <sup>11</sup>Li+p/d data at higher energies